Use of Sustainable Nanotechnology Examples in the College Classroom

Deb Newberry Dakota County Technical College Rosemount, MN

deb.newberry@dctc.edu dmnewberry2001@yahoo.com

Midwest Regional Center for Nanotechnology Education

Minnesota State Community and Technical College-Moorhead

★ Dakota County Technical College

★ Chippewa Valley Technical College

★ William Rainey Harper College

★ Lansing Community College

Lead Institution: Dakota County Technical College

University Partner: University of Minnesota PI: Deb Newberry deb.newberry@dctc.edu

Nano Infusion Project

- Complete, topical modules to high school and college educators
- Module = Activities, background, worksheets, ppt, video, resources etc.
- Currently 12 modules (8 additional this year)
- Educator Workshops
- This school year
- Over 5000 students
- 92 Teachers
- 17 States

The Approach

Idea for a nanoscience 2 year program (2003)

Industry input

U of MN partnership

NSF ATE Project Grant (2004 – 2008)

2 yr, multi-disciplinary program

43 of the 72 credits = nano specific courses

Regional Center for Nanotechnology Education: Nano-Link (2008 – 2012)

Share program, courses

Modular approach developed for nano content

Nano- Link II – partner with other NSF Centers (2012 – 2015)

Nano content into industry specific modules

Biotechnology, photonics, material science

DCTC NanoScience Program

Critical Thinking

Traditional Science Applicable Concepts (lecture and lab experiences)

Conceptual Understanding

Hands-On

Soft Skills

Physics

Chemistry

Biology

Materials Science

Math

Engineering

Nanoscience Concepts (lecture and lab experiences)

Sense of Scale

Scale
Surface
area to
volume
ratio

Atomic and Molecular Structure Material

Properties

Forces and Interactions Quantum Effects Application Extension of basic Concepts "Self

assembly"

Computer Simulation

Nanomaterials

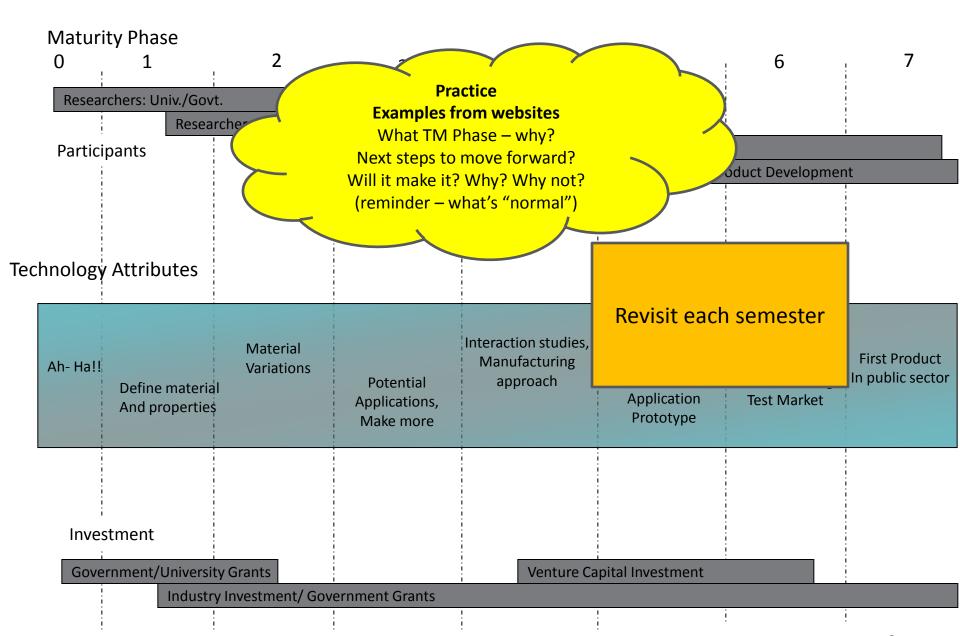
Nanoelectronics

Nanobiotechnology

Dakota County Technical College Nanoscience Technology Program Course Outline and Credit Allocation

rev. 2011

Semester 1 at DCTC			Semester 2 at DCTC				Semester 3 at DCTC		Semester 4 At Univ. of MN		
Course	Name	Credits	Course	Name	Credits	Course	Name	Credits	Course	Name	Credits
BIOL 1500	General Biology	4	CHEM 1500	Introduction to Chemistry	4	NANO 2101	Nano Electronics	3	MT 3111	Elem. of Micro Manufacturing	3
PHYS 1100	College Physics I	4	PHYS 1200	College Physics II	4	NANO 2111	Nanobiotechnology/ Agriculture	3	MT 3112	Elem. of Micro Mfg Lab	1
ENGL 1100	Writing & Research Skills	3	SPEE 1020	Interpersonal Communication	3	NANO 2121	Nanomaterials	3	MT 3121	Thin Films Deposition	3
MATS 1300	College Algebra	4	MATS 1250	Principles of Statistical Analysis	4	NANO 2131	Manufacturing, Quality Assurance	2	MT 3131	Intro to Materials Characterization	3
NANO 1100	Fund. of Nano I	3	NANO 1200	Fund of Nano II	3	NANO 2140	Interdisciplinary Lab	3	MT 3132	Materials Characterization Lab	1
			NANO 1210	Computer Simulation	1	NANO 2151	Career Planning and Industry	1	MT 3141	Principles and Applications of Bionanotechnology	3
			NANO 1222	Student Lab Experience and Research	3				MT 3142	Nanoparticles & Biotechnology Lab	1
									NANO 2970	Internship	2
Credits		18	Credits	•	19	Credits	1	15	Credits	•	17


Dakota County Technical College Nanoscience Technology Program Course Outline and Credit Allocation

rev. 2011

	Semester 1 at DCTC			Semester 2 at DCTC			Semester 3 at DCTC		Semester 4 At Univ. of MN		
Course	Name	Credits	Course	Name	Credits Course		Name	Credits	Course	Name	Credits
BIOL 150 0	General	1	CHEM	Introduction to 4 Chemistry		NANO 2101			MT 3111	Elem. of Micro Manufacturing	3
PH YS 1100	Appro			College Physics II	Tech	nolog	gy Maturity Mo	odel		Elem. of Micro Mfg Lab	1
1100	Top o Botto			Interression Communic Participants Funding						Thin Films Deposition	3
1300	Algebra		1250	Princ ples of Statistical Analysis		Non-technical influences				Intro to Materials Characterization	3
NANO 1100	Fund. of Nano I	3	NANO 1200	Fund of Nano II	3	NANO 2140	Interdisciplinary Lab	3	MT 3132	Materials Characterization Lab	1
			NANO 1210	Computer	1	NANO	Career Planning and Industry	1	MT 3141	Principles and Applications of Bionanotechnology	3
			NANO 1222	Societal A	al				MT 3142	Nanoparticles & Biotechnology Lab	1
				EPA, FDA, Re Multi-Disci	iplinary				NANO 2970	Internship	2
Credits		18	Credits	Intellectual I	Propert	:y		15	Credits		17

Dakota County Technical College Nanoscience Technology Program Course Outline and Credit Allocation

rev. 2011

Semester 1 at DCTC			Semester 2 at DCTC				Semester 3 at DCTC			Semester 4 MN Manf., QA				
Course	Name	Credits	Course	Name		Credits	Course	Name	$\neg \sqcap$	Se	lect App	lication		Credits
BIOL 1500	General Biology	4	CHEM 1500	Introduction	n to	4	NANO 101	Nano Electronics		FMECA			ro ıg	3
PHYS 1100	College Physics I	4	PHY 5 1200	Compl	ANO Nanobiotechnology Agriculture EHS					•	ro Mfg	1		
ENGL 1100	Writing & Research Skills	3	SPE E 1020		C,B, N	-	ANO 121	Nanomater	ials	3121 Deposition		Deposition	n	3
MATS 1300	College Algebra	4	MATS 1250	Stausucar Analysis			ANO 2131	Manufactur Quality Ass		2	MT 3131		o to Materials racterization	
NANO 1100	Fund. of Nano I	3	NANO 1200	Fund of Nano II Computer Simulation		3	NANO 2140	Interdisciplinary Lab		3	MT 3132			1
			NANO 1210			1	NANO 2151	Career Plan Industry	Career Planning and Industry					3
			NANO 1222	Student Lab Experience and Research	3						1			
					1 [1		NANO 2970	Internship		2
Credits		18	Credits	1	\dagger	Start	EHS ting material			15	Credits			17
DAKOTA COUNTY							e, operation End of life				l			<u> </u>

Dakota County Technical College

Nanoscience Technology Program Course Outline and Credit Allocation rev. 2011 **Functionalized Gold NPs** Semester 1 Semester 2 Semester at DCTC at DCTC at D Tumor destruction Exit Body Name Credi Name Course Course redits Capture/Contain/Reuse BIOL NANO Nano **Applications** 1500 2101 Electronics **Agricultural Sensors** Nanobiotechnology NANO Micro Mfg Environ. sensing/purification 3112 11 Agriculture Lab Energy (Solar, cellulose, biofuels, NANO **Nanomaterials** MT Thin Films 3 mechanical, thermal etc.) 2121 3121 Deposition **MATS** Con **NANO** Manufacturing MT Intro to Materials 1300 tatistical Quality Assurance 3131 Characterization Algebra 2131 Analysis Fund of Nano II **NANO** Fund. of NANO **NANO** Interdisciplinary Materials MT 3132 1100 Nano I 1200 2140 Lab Characterization Lab **Industry Activities** NANO Computer Principles and 3 Simulation Applications of 1210 **Technical** Bionanotechnology **Environmental** 3 **NANO** Student Lab Nanoparticles & Non-Technical Experience and Biotechnology Lab 1222 Research NANO Internship 2 2970 Credits 18 Credits 19 Credits 15 Credits 17

Summary

- Multi-disciplinary 72 credit NanoScience Program
- Concepts, hands-on, analytical and 21st Century skills
- Sustainable nanotechnology concepts, activities, experiments included in all semesters
- Student research includes feasibility studies, industry research support – partnerships with Univ. in research (NP impact on diatoms)

Thank you!!!!

Technology Maturity Model

Descriptor
Participants
Funding
Non-technical influences

EHS

Starting material
Use, operation
End of life

Manf., QA

Select
Application
FMECA
Reliability
EHS

Societal Aspects

Global
EPA, FDA, Regulatory
Multi-Disciplinary
Intellectual Property

Approaches

Top down Bottom Up

Industry Activities

Technical Environmental Non-Technical **Complex Systems**P,C,B, MS

Practice Examples from wbsites

What TM Phase – why?
Next steps to move forward
Will it make it? Why? Why not?

Industry Activities

Technical Environmental Non-Technical

Functionalized Gold NPs

Tumor destruction
Exit Body
Capture/Contain/Reuse

Applications

Agricultural Sensors
Environ. sensing/ purification
Energy (Solar, cellulose,
biofuels, mechanical,
thermal etc.)

